Några matematiska härledningar och bevis: Skillnad mellan sidversioner

Från MaFy
Ingen redigeringssammanfattning
Rad 44: Rad 44:
Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när <math>x</math> ökar obegränsat. Enligt [[l'Hôpital's regel]] gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:
Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när <math>x</math> ökar obegränsat. Enligt [[l'Hôpital's regel]] gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:


<math>\ln y=</math>
<math>\ln y=\displaystyle\lim_{x\to \infty}\frac{\left(\frac{1}{1+\frac{1}{x}} \right)\cdot\left(0-x^{-2} \right)}{-x^{-2}}</math>

Versionen från 2 juni 2019 kl. 13.25

Logaritmlagarna

Multiplikaton

Under uppbyggnad.

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(ab)=\log(a)+\log(b)}

Division

Under uppbyggnad

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log\left(\frac{a}{b}\right)=\log(a)-\log(b)}

Potenser

Under uppbyggnad

Värdet på basen av den naturliga logaritm

Metod 1, via serieutveckling

Ansätt

Logaritmering av respektive led ger:

Enligt taylorutveckling av så gäller

För värden på nära noll gäller enligt detta att (ju närmare noll, desto bättre approximation), varför

för stora värden på .

Således gäller att för stora värden på .

Antilogaritmering ger direkt att med gränsvärdet

enligt ansättningen av ovan.

Metod 2, via l'Hôpital's regel för gränsvärdesberäkning

Ansätt och logaritmera:

, som kan skrivas om till

Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när ökar obegränsat. Enligt l'Hôpital's regel gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y=\displaystyle\lim_{x\to \infty}\frac{\left(\frac{1}{1+\frac{1}{x}} \right)\cdot\left(0-x^{-2} \right)}{-x^{-2}}}