Några matematiska härledningar och bevis: Skillnad mellan sidversioner

Från MaFy
Ingen redigeringssammanfattning
Rad 20: Rad 20:


<math>e=\displaystyle\lim_{x\to \infty}\left(1+\frac{1}{x}\right)^x</math> enligt ansättningen av <math>y</math> ovan.
<math>e=\displaystyle\lim_{x\to \infty}\left(1+\frac{1}{x}\right)^x</math> enligt ansättningen av <math>y</math> ovan.
----


===Metod 2, via [[l'Hôpital's regel]] för gränsvärdesberäkning===
===Metod 2, via [[l'Hôpital's regel]] för gränsvärdesberäkning===

Versionen från 2 juni 2019 kl. 17.26

Värdet på basen av den naturliga logaritm

Metod 1, via serieutveckling

Ansätt

Logaritmering av respektive led ger:

Enligt taylorutveckling av så gäller

För värden på nära noll gäller enligt detta att (ju närmare noll, desto bättre approximation), varför

för stora värden på .

Således gäller att för stora värden på .

Antilogaritmering ger direkt att med gränsvärdet

enligt ansättningen av ovan.


Metod 2, via l'Hôpital's regel för gränsvärdesberäkning

Ansätt och logaritmera:

, som kan skrivas om till

Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när ökar obegränsat. Enligt l'Hôpital's regel gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:

Eftersom gäller att .