Några matematiska härledningar och bevis: Skillnad mellan sidversioner

Från MaFy
Rad 28: Rad 28:
<math>\ln y=\displaystyle\lim_{x\to \infty}\ln \left(1+\frac{1}{x}\right)^x=\displaystyle\lim_{x\to \infty}x\ln\left(1+\frac{1}{x}\right)</math>, som kan skrivas om till
<math>\ln y=\displaystyle\lim_{x\to \infty}\ln \left(1+\frac{1}{x}\right)^x=\displaystyle\lim_{x\to \infty}x\ln\left(1+\frac{1}{x}\right)</math>, som kan skrivas om till


<math>\ln y = \displaystyle\lim_{x\to \infty}\frac{x\ln\left(1+\frac{1}{x}\right)}{x^{-1}}</math>
<math>\ln y = \displaystyle\lim_{x\to \infty}\frac{\ln\left(1+\frac{1}{x}\right)}{x^{-1}}</math>


Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när <math>x</math> ökar obegränsat. Enligt [[l'Hôpital's regel]] gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:
Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när <math>x</math> ökar obegränsat. Enligt [[l'Hôpital's regel]] gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:

Versionen från 2 juni 2019 kl. 17.49

Värdet på basen av den naturliga logaritm

Metod 1, via serieutveckling

Ansätt

Logaritmering av respektive led ger:

Enligt taylorutveckling av så gäller

För värden på nära noll gäller enligt detta att (ju närmare noll, desto bättre approximation), varför

för stora värden på .

Således gäller att för stora värden på .

Antilogaritmering ger direkt att med gränsvärdet

enligt ansättningen av ovan.


Metod 2, via l'Hôpital's regel för gränsvärdesberäkning

Ansätt och logaritmera:

, som kan skrivas om till

Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när ökar obegränsat. Enligt l'Hôpital's regel gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras:

Eftersom gäller att .