Integralkalkylens fundamentalsats: Skillnad mellan sidversioner

Från MaFy
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 1: Rad 1:
Integralkalkylens fundamentalsats ger sambandet mellan derivata [[integral]], alltså sambandet mellan lutningen på en kurva och arean under densamma.
Integralkalkylens fundamentalsats ger sambandet mellan [[derivata]] och [[integral]], alltså sambandet mellan lutningen på en kurva och arean under densamma.


[[File:Integralkalkylens_fundamentalsats_-_Bild.png|thumb|Figur 1: Arean <math>F(x)</math> under funktionsgrafen <math>y=f(t)</math>]]
[[File:Integralkalkylens_fundamentalsats_-_Bild.png|thumb|Figur 1: Arean <math>F(x)</math> under funktionsgrafen <math>y=f(t)</math>]]

Versionen från 8 juni 2019 kl. 08.17

Integralkalkylens fundamentalsats ger sambandet mellan derivata och integral, alltså sambandet mellan lutningen på en kurva och arean under densamma.

Figur 1: Arean under funktionsgrafen

Satsen består av två delar. Dels delen som anger sambandet mellan integral och primitiv funktion:

Och dels delen som anger hur en integrals värde ska evalueras med hjälp av den primitiva funktionen: