Några matematiska härledningar och bevis

Från MaFy

Logaritmlagarna

Multiplikaton

Under uppbyggnad.

Division

Under uppbyggnad

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log\left(\frac{a}{b}\right)=\log(a)-\log(b)}

Potenser

Under uppbyggnad

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log a^b=b\log a}

Värdet på basen av den naturliga logaritm

Metod 1, via serieutveckling

Ansätt Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\left(1+\frac{1}{x}\right)^x}

Logaritmering av respektive led ger:

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y=x\ln\left(1+\frac{1}{x}\right)}

Enligt taylorutveckling av Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(1+a)} så gäller

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(1+a)=a-\frac{a^2}{2}+\frac{a^3}{3}-\frac{a^4}{4}+...}

För värden på Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} nära noll gäller enligt detta att Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(1+a)\approx a} (ju närmare noll, desto bättre approximation), varför

Misslyckades med att tolka (SVG (MathML kan aktiveras via insticksmodul till webbläsaren): Ogiltigt svar ("Math extension cannot connect to Restbase.") från server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln\left(1+\frac{1}{x}\right)\approx\frac{1}{x}} för stora värden på .

Således gäller att för stora värden på .

Antilogaritmering ger direkt att med gränsvärdet

enligt ansättningen av ovan.

Metod 2, via l'Hôpital's regel för gränsvärdesberäkning

Ansätt och logaritmera:

, som kan skrivas om till

Det ser inte så roligt ut, men det syns att såväl täljare och nämnare i uttrycket går mot noll när ökar obegränsat. Enligt l'Hôpital's regel gäller då att gränsvärdet för uttrycket blir detsamma som gränsvärdet då täljare och nämnare deriveras: